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Background

« Convolution operator contains two components:

 Learnable template (Kernel)

 Similarity measure (inner product)

« Learning (modifying) the shape of kernel:
* Dilated (atrous) convolution

 Deformable convolution, Active convolution

« Learning (modifying) the similarity measure:
* Hyperspherical convolution
* Decoupled convolution

« Our work aims to generalize the current convolution
operator by jointly learning both kernel shape and
similarity measure.

 Hand-designed inner-product based convolution is
unlikely to be optimal for every task.

* Optimizing an underdetermined guadratic objective
over a matrix W with gradient descent on a
factorization of this matrix leads to an implicit
regularization for the solution

Main Contribution

* Neural similarity generalizes the inner product via

bilinear similarity.

* Neural similarity network stacks convolution layers
with neural similarity.

« Static and dynamic learning strategies for the neural
similarity.

 Significant performance gain in visual recognition and
few-shot learning.

High-level Comparison with Inner Product
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* Aline represents a multiplication operation and a
circle denotes an element in a vector. Green color
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Neural Similarity Learning

Notation:
W : a convolution kernel with size ¢ X H x V.

={Wl Wy ., W& FTeRMY: 3 flatten kernel.

X : a flatten input patch.

Generalizing convolution with bilinear similarity:

(W, X)=W ' MX

where M c RCHVXCHV denptes the bilinear similarity

mautrix.

Constraining M to be block-diagonal:

(W, X)=Ww"' X
M

where M =diag(My,--- , M) and M, is of size

HV x HV. Note that, hyperspherical convolution becomes
a special case of this bilinear formulation |f M s a
diagonal matrix with diagonal being HWHHXH

Learning Static Neural Similarity

* We learn the matrix M jointly with
the convolution kernel via back-
propagation.

Neural Similarity

* Learning static neural similarity
can be viewed as a factorized

’ earning of neurons.
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such factorization tends to give
Mminimum nuclear norm solution.

Learning Dynamic Neural Similarity
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We use a neural network to predict the neural similarity.

Such neural similarity is dynamic in the sense that it is

dependent
neural simi
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on the input and dynamically determines the
arity during inference.

ent to a dynamic neural network.

* Equal Contribution

Disjoint and Shared Parameterization
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(b) Shared Parameterization

Learning Both Kernel Shape and Similarity
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where D =diag(dy, -+ ,dygyv) and d;€{0,1},Vi,

Theoretical Insights

viewed as a form of matrix multiplication where the
weight matrix W is factorized as MW’

Implicit reqgularization (in gradient descent).

« Comparison of gradient flow:

Standard derivative
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DNU Is given by a differential equation:
z(t)=—ow(t)+ f(w, z(t), u), y(t)=g(x(t))

state feedback and self-recurrence.

 Implicit regularization induced by NSL: NSL can be

« Such factorization form not only provides more modeling
and regularization flexiblility, but it also introduces an

W,

« Connection to dynamic neural unit (DNU): an isolated

 Different from DNU, dynamic NSN does not have the

Code is available at
https://github.com/wyliu/NSL

Generic Image Recognition

MfﬂhOd Eror (%) Eyror of different
- Ba§e11;nsteNC(1§iI 0 ;-Zg parameterization
yhamic dare ‘ on CIFAR-100
Dynamic NSN (Disjoint) 6.85

« Shared parameterization has better generalizability
than disjoint parameterization.

Method CIFAR-10  CIFAR-100
Baseline CNN 7.78 28.95
Baseline CNN++ 7.29 28.70
Static NSN w/ DNS 7.15 28.35
Static NSN w/ UNS 7.38 28.11
Dynamic NSN w/ DNS 6.85 27.81
Dynamic NSN w/ UNS 6.5 28.02

Testing error on CIFAR-10 and CIFAR-100

Method Top-1 Top-5  # params
Baseline CNN 42.72 19.11 3.90M
Baseline CNN++ 42.11 18.98 9.71M
Dynamic NSN w/ DNS 40.61 18.04 9.61M

Testing error on ImageNet-2012

 NSL generally yields better generalization power.

 NSL has better parameter efficiency.

 NSL does not affect the inference speed and has
the same inference speed as its CNN counterpart.

Few-shot Image Recognition

Method Backbone 5-shot Accuracy
Finetuning Baseline CNN-4 49.79 = 0.79
Nearest Neightbor Baseline CNN-4 51.04 == 0.65
MatchingNet CNN-4 55.31 = 0.73
ProtoNet CNN-4 68.20 = 0.66
MAML CNN-4 63.15 = 0.91
RelationNet CNN-4 65.32 = 0.70
Static NSN (ours) CNN-4 65.74 4 0.68
Meta-learned static NSN (ours) CNN-4 66.21 + 0.69
Dynamic NSN (ours) CNN-4 71.26 = 0.65
Discriminative k-shot ResNet-34 73.90 = 0.30

Tadam ResNet-12 76.7 = 0.3

LEO ResNet-28 77.59 1+ 0.12
Dynamic NSN (ours) CNN-9 77.44 + 0.63

similarity matrix M during training.

Few-shot classification on Mini-ImageNet test set

* Meta-learned static NSN Is to meta-learn the neural

 NSL generally has better generalization power on

few-shot learning.

learned by a neural network.

* Dynamic NSL performs the best and also outperforms
the variant where M Iis meta-learned instead of being




